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Turbulence in the noise-producing region 
of a circular jet 

By P .  BRADSHAW, D. H.  FERRISS AND R.  F. JOHNSON 
Aerodynamics Division, National Physical Laboratory, Teddington 

(Received 13 June 1963 and in revised form 17 December 1963) 

The flow in the noise-producing region of a circular jet is found to be dominated 
by a group of large eddies, containing nearly a quarter of the turbulent shear 
stress in the quasi-plane region of the shear layer: their contribution to the shear 
stress decreases as the effects of axisymmetry become noticeable at more than 
about two diameters downstream of the nozzle. These large eddies appear to be 
almost entirely responsible for the irrotational fluctuations near the nozzle, 
which, for this and other reasons, are larger relative to the reference dynamic 
pressure than in other shear flows. As a consequence of this, the convection 
velocity near the high- and low-velocity edges of the flow is biased towards the 
mean velocity in the high-intensity region. The dominance of the large eddies 
therefore explains the measurements of near-field pressure fluctuations by Frank- 
lin & Foxwell( 1958), and of convection velocity by Davies, Barratt & Fisher (1963) 
and the present authors. The strength of these large eddies, compared with those 
in the boundary layer or wake, is remarkable. 

The large eddies appear to be mixing-jets similar to those found by Grant 
(1958) in the wake, but with their projection in the (y, 2)-plane inclined at about 
45" to the y (radial) axis instead of lying along the y-axis as in the wake. 

It is suggested that the augmentation of these large eddies by artificial means 
could be used to increase the mixing rate and permit the reduction of jet noise 
by means of acceptably short ejector shrouds. 

The medium-scale motion is found to be far from isotropic in scales, although 
the two scales associated with a given vorticity component are more nearly equal. 
This phenomenon is also noticeable in the wake. 

It is found that the departure from self-preservation, which starts when 
the shear layer thickness is no longer small compared with the nozzle radius, 
does not grossly affect the region of high turbulence intensity and maximum 
noise production until this region itself is no longer small compared with the 
radius. The maximum shear stress seven diameters downstream of the exit is 
still 7 0 %  of its value near the exit, and the non-dimensional mean velocity 
gradient is practically unchanged. 

1. Introduction 
Current studies of turbulent jet flows have been stimulated by the aircraft 

noise problem. Most of the noise generated by a circular jet exhausting into still 
air is found to be emitted within about ten nozzle diameters of the exit and several 
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model experiments on the turbulent flow in this region have been reported 
(Laurence 1956; Richards & Ffowcs Williams 1959; Davies et al. 1963). 
The flow in the noise-producing regions of a jet exhausting into a moving stream 
is almost the same at the airspeed ratios typical of aircraft on take-off or initial 
climb. In  previous experiments, effort has been concentrated more on the 
quantities which are easiest to measure than those which throw direct light on the 
structure of the flow or the way in which it produces noise. The measurement of 
the fluctuating stress tensor which is the forcing term in Lighthill’s (1952, 1954) 
equation for noise emission seems to be out of the question, and the develop- 
ment of approximations to i t  has not reached a state (Lilley 1958; Ffowcs 
Williams 1963) where reasonably simple measurements can be used to predict 
the noise output. In  the absence of some technique for identifying or reducing 
only that very small part of the turbulence which produces the noise (and which is 
not necessarily associated with any particular group of eddies), the most promis- 
ing method of achieving a worthwhile increase of noise reduction over that given 
by lobed nozzles seems to be the use of ejector shrouds surrounding the noise- 
producing region. Sufficiently long shrouds with walls of acoustically absorbent 
material would in principle produce a very great noise reduction, albeit with an 
unacceptable thrust and weight penalty. If shrouds are to be short enough to be 
operationally acceptable, they will have to be used with special nozzles or other 
devices to increase the rate at which the jet mixes with the surrounding air. 
It appears that progress with such nozzles will require a better understanding 
of the natural mixing processes, which must be based on more comprehensive 
measurements than have so far been made. The work reported here was under- 
taken for this reason. 

Aquestion of immediate interest was the existence or otherwise of a well- 
defined group of large eddies like those found in the wake and boundary layer 
by Grant (1958), which Townsend (1956) suggests will control the distortion of the 
boundary between the turbulent flow and the surrounding fluid, thus determining 
the rate of mixing. A broader aim was the collection of enough data on jet 
turbulence to bring our knowledge of this flow into line with our knowledge of 
the boundary layer and wake, which have been the subjects of most past experi- 
ments on turbulent shear flow. The first few sections of this paper give a general 
description of the flow, based on this data. This description also illustrates 
the dominance of the large eddies, which are discussed in detail in 8 7. 

The flow from a circular nozzle into still air can be divided into regions as 
shown in figure 1 (a). The transition region is usually small compared with the 
nozzle dimensions and is followed by a quasi-plane mixing layer in which the 
flow is self-preserving (Liepmann & Laufer 1947). In  this region, velocity and 
intensity profiles are geometrically similar when plotted against 7 = (y - r,)/x 
(see figure 1 (a) for notation). The present results were mostly obtained at x/r,  = 4, 
but a scale of 7 is included on the graphs to permit comparison with other posi- 
tions: see, for instance, figures 25-28. When the thickness of the mixing layer 
becomes an appreciable fraction of the nozzle radius, departures from self- 
preservation begin. At about four or five nozzle diameters downstream the 
shear layer has spread to the axis. At more than about 20 diameters downstream 
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another self-preserving state is reached: this asymptotic state, studied by 
Corrsin & Uberoi (1950, 1951), is usually called a ‘jet’ without qualification; 
here we shall use the term ‘asymptotic jet ’. 

A review of the available information on plane mixing layers and asymptotic 
jets is given by Townsend (1956). It is clear, however, that most of the noise of 
circular jets is generated in the non-equilibrium region in which the flow charac- 
teristics change from those of a plane mixing layer to those of an asymptotic 
jet, so that these ideal flows are of interest chiefly as defining the limits between 
which the flow in the noise-producing region changes, but we shall see later that 

Approximate end 
of noise-producing 
region, x/ro = 20 .- 

_c 

Asymptotic 

FIGURE l ( a )  

the flow properties in most of this region are roughly the same as in a plane 
mixing layer a t  the same distance from the exit. The final departure from this 
rough approximation, near x/ro = 13, is quite sudden (see figure 23) and the 
decrease in noise production is probably much more abrupt still so that the noise- 
producing region is very crudely a quasi-plane mixing layer terminated at  
x/ro = 15 or 20. 

The rate at which the shear layer spreads a t  low Mach numbers is shown by 
the gas-injection schlieren pictures of plate 1, figure 1 (b )  and (c). Thevortexrings 
in the transition region, and the ensuing longitudinal striations predicted by Lin 
and Benney (Benney 1961) are visible. It should be noted that these pictures 
show the effect of refractive index (gas/air concentration ratio) changes inte- 
grated along the light path, and do not strictly represent a view of the laminar- 
turbulent interface. 

2. Apparatus 
A 2-in. diameter nozzle was chosen as being the largest for which noise measure- 

ments could be made on laboratory scale and which could be run from the existing 
compressed air supply: at low subsonic speeds, on the other hand, this is about 
the smallest nozzle capable of producing a fully developed turbulent mixing 
layer sufficiently close to the nozzle that the effects of transition and of axi- 
symmetry do not overlap. A nominal Mach number of 0.3 was chosen, high 
enough for at least comparative noise measurements to be made but low enough 
for the effects of compressibility on the turbulent motion to be negligible. 

38 Fluid Mcch. 19 
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Air was supplied from the 35Op.s.i. storage bottles through a remotely 
controlled silenced pressure reducer (Bradshaw 1963 a) ,  passed through a heater 
to raise its total temperature to that of the atmosphere so that the hot wires 
would not record temperature fluctuations, and delivered to the nozzle through 
a series of silencing baffles, a honeycomb, screens and a 36: 1 contraction. The 
boundary layer a t  the nozzle exit was found to be laminar at M = 0.3, with a 
displacement thickness of 0-008in. and a shape parameter H of 2.2. Even a 
moderate increase of boundary-layer thickness, or a decrease in Mach number, 
leads to the onset of considerable ‘scale effect’, chiefly as a change in virtual 
origin of the mixing layer. (This may well be the explanation of the ‘Mach 
number ’ effects found by some other workers but absent in the work of Maydew 
& Reed 1963, and casts some doubt on measurements with smaller jets than 
the present one.) Near M = 0.3 and above, however, the present exit conditions 
are satisfactory, and a fair approach to similarity is attained in about one nozzle 
diameter, Umx/v  N 3.5 x lo5, which agrees with Liepmann & Laufer’s figures. 
Checks have been made of the freedom from scale effect of the turbulence 
intensity and spectra in the fully developed turbulent flow. 

Linearized constant-temperature anemometers were used, with wires of 
0.00015in. diameter about 0.02in. long. The upper frequency limit of the 
anemometers depended on wire resistance and on airspeed but was usually about 
40-50 kc/s ( - 3 dB) at the higher speeds. The multipliers, integrator and other 
processing apparatus used are described by Johnson (1962) and Bradshaw & 
Johnson (1963): the overall frequency response was in effect that of the anemo- 
meters. 

All wires were calibrated in the centre of the jet and matched to  the linearizing 
circuits. The X probes used to measured v- and w-component fluctuations were 
calibrated for yaw also, because of doubts about the relation between the geo- 
metrical angle of yaw of the wires and the ‘ effective ’ angle determining the yaw 
response. 

3. The region of approximate similarity-general description 
This is defined as the part of the jet which is little influenced either by the 

exit conditions or by axisymmetry: this is an elastic definition and we shall see 
that some of the gross properties of the flow are approximately similar up to 
seven or eight diameters from the exit. The equations of motion and continuity 
in a cylindrical mixing layer do not permit similar forms for the mean velocity and 
shear stress except very near the nozzle exit but in practice it seems that the first 
effect of axisymmetry is an inward displacement of the whole shear layer 
(figure 25)  whose properties otherwise remain nearly the same as in the plane 
mixing layer. 

The mean velocity (figure 2 ( b ) )  and shear stress (figure 3) profiles agree well 
with those of Liepmann & Laufer (1947). The mean velocity at y/r, = 1 or 

= (y - yo)/. = 0, found to be O-SSU, in the plane mixing layer, falls slightly with 
increasing x in the circular jet (figure 2 (a ) )  and reaches 0.65 Urn at x/ro = 4. 
aU/ay and the shear layer width remain closely the same as in the mixing layer. 
The u- and v-component turbulent intensities (figure 4) also agree quite well with 
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Liepmann & Laufer’s measurements using non-linear constant-current hot 
wire apparatus. The w-component (figure 4) is found to be slightly larger than the 
v-component except near the inner edge of the flow where the v-component is 
bigger: measurements in the truly two dimensional mixing layer show that the 
v- and w-component intensities are almost identical except near the inner 
edge. The u-component is larger than the other two in the central region and 
reaches its maximum slightly further out, but is rather smaller near the inner edge. 
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FIGURE 2(a) .  Mean velocity y/ro = 1 (7 = 0). 
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FIGURE 3(b ) .  Mean velocity x/ro = 4. 

Observation of oscilloscope traces shows that the v- and w-fluctuations near 
the inner edge consist of low-frequency undulations with occasional bursts of 
high frequencies, whereas the smaller u-component consists of occasional groups 
of negative-going spikes separated by intervals of near-quiescence : this indicates 
that the fluctuations in this region are partly due to the irrotational field of 
the more intense eddies which occur near y/vo = 1 and that the higher-frequency 
(vorticity-mode) fluctuations are caused by slower-moving patches of turbulent 
fluid which have erupted from nearer the centre of the shear layer. 

38-2 
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Even in the high-intensity region, convection of fluid up and down the mean 
velocity gradient by the w-component, or ‘shaking’ of the shear layer to take 
another view, must contribute greatly to the u-component. This probably ex- 
plains why the maximum intensity of the u-component occurs near the position 
of maximum mean velocity gradient whereas the v- and w-component maxima 
occur nearer the inner edge of the flow. 

In  the outer region the turbulence again becomes intermittent, and although 
the intensity falls rapidly the ratio of r.m.s. intensity to local velocity increases. 
Surprisingly, reversals of velocity direction donot seem tooccur. Theu-component 
vorticity-bearing fluctuations are now positive-going spikes but rotational fluid 
appears to penetrate further from the maximum intensity region than on the 
inner side of the flow, and consequently the irrotational field is not so obvious. 

N 

6 
0.2 

0 

N E  
b 
2- 

3 

0 2  0.4 0.6 0-8 1 -0 1.2 1.4 

Ylro 
FIGURE 3. Turbulent shear stress and shear correlation coefficient = 

x/r0 = 4. 

The shear stress distribution (figure 3) is given both as U . / U i  and G/.iiij. (Here 
F is the time-mean, and the r.m.s. value, of F.) The latter expression is the 
shear correlation coefficient, R,,(O, 0, 0: 0), which may be regarded as the 
efficiency of shear stress production by the turbulence, since it is the ratio of the 
actual shear stress to the shear stress that would be produced if the u- and w- 
component motions were perfectly correlated. It has a maximum value of + 0.54 
(Liepmann & Laufer’s value was 0.56) compared with about 0.5 in the boundary 
layer (Klebanoff 1955) and 0.44 in the asymptotic jet (Corrsin & Uberor 1951), 
and falls to zero at both edges of the flow because the u and w fluctuations become 
irrotational (the turbulent fluid near the edges may still have a finite value of 
I&,). It is reasonable that the mixing layer should have a higher value of shear 
correlation than the boundary layer or asymptotic jet: the boundary-layer 
flow is confined by a wall, so that any large-scale w-component motion must 
induce an inflow or outflow in the u- and w-component directions in order to 
maintain continuity, and this u- and w-component ‘splashing ’ motion will not 
contribute to the shear stress: in the asymptotic jet negatively sheared fluid 
from the other side of the centre line will occasionally invade the flow. Since the 
maximum value of R,, is unity it is unlikely that the shear stress and mixing 
rate of any flow can be significantly increased without an artificial increase in 
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intensity levels. The maximum value of ZlVlUk occurs at  a small positive value 
of r,~, as required by the equation of motion. 

The frequency spectra (figures 5-7) of the velocity components vary consider- 
ably across the jet. The spectral density $ per unit non-dimensional frequency 
ox/Um is normalized so that 

Ylro 
FIGURE 4. Root-mean-square turbulent intensities x/ro = 4. 

In  the inner region all three spectra have pronounced peaks, but in the region 
of maximum intensity the u-component spectrum peak disappears, and in the 
outer region all three spectra fall monotonically with increasing frequency. As 
Townsend (1958) has pointed out, correlations without negative loops (or, an 
approximate equivalent, spectra without peaks) correspond to decaying pulses of 
velocity, whereas peaked spectra obviously imply some sort of wave motion in a 
preferred frequency range but with no immediate indication of the number 
of wavelengths to which the motion extends. This supports the view that the 
flow in the outer region is made up of tongues of turbulent fluid which penetrate 
into the low-velocity region and are then re-entrained: we are not likely to learn 
very much about the high-intensity region by studying the properties of the 
outer region, with the possible exception of the intermittency. 

The local isotropy hypothesis (Kolmogorov 1962) that the smaller eddies in 
the flow are unconscious of the preferred directions of the larger eddies is 
physically appealing and is a great help in inferring the properties of the high 
wave-number regions. One of the most easily checked predictions of the theory is 
that {u(w) v(w))/.ii.(o) 6(o)) tends to zero as o -+ co and several experimental 
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demonstrations of its correctness have been given. The shear correlation spectra 
(figure 8) obtained in the present experiment do not reach zero within the fre- 
quency range of the equipment, the minimum values of R,,(w) obtained being 
about 0-1 or 0.2, and eddy shedding from the prongs of the hot-wire probe causes 
the apparent correlation coefficient to rise again at the highest frequencies where 
the turbulent energy is very small. In  view of the previous verifications of the 
prediction, however, i t  is reasonable to deduce that R,,(w) does tend to zero 

WXlU7n 

FIGURE 7. w-component spectra x/ro = 4. 

in the jet. About 4 %  of the energy in the q512 spectrum a t  ylr, = 1 lies in the 
frequency range above wxlU, = 60 compared with 10% of the energy in the 
$,, spectrum. Measurements of the spectral densities of the three velocity 
components at high frequencies showed that they were equal to within 20% 
or so, but as the r.m.s. intensities are nearly equal anyway one would not really 
expect any great discrepancies: these are more likely to show up in transverse 
correlation measurements. The spectral densities of all three components at  
higher frequencies vary approximately as o-8, which is another prediction of the 
local isotropy theory, but one doubts whether great significance attaches to 
this because the 0-8 variation begins at  frequencies where R,,(w) is still quite 
near its maximum value. Kistler & Vrebalovich (1961) seem to have found an 
w-if variation starting a t  surprisingly low frequencies in grid turbulence. A 
proper check of local isotropy in the mixing layer must await the measurement 
of the high-frequency spectra or correlations with small separation, but the 
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hypothesis clearly gives us no help in constructing a simplified model of the 
medium-scale energy-containing eddies. 

The longitudinal correlations, Rii(y, 0 , O )  (figures 9-1 l),* are similar in general 
shape to the autocorrelations or the Fourier transforms of the spectra: a closer 
comparison would reveal the departures from Taylor's ( 1938) hypothesis 
of rigid convection which will be discussed later (9 5 (b ) ) .  The most interesting of 
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FIGURE 8. Correlation coefficient R,,(w), x/r0 = 4. 

the correlations with radial separation (figures 12-14) are the R,,(O, r ,  0) and 
R,,(O, r ,  0)  correlations, shown here as contour plots of correlation coefficient, 
(u i (y )  u i ( y  + r)} / { i i i (y)  Gi(y + r)} .  This type of plotting is more satisfactory for shear 
flows than the conventional plot of (u,(y) ui(y  + r)}/u;(y) against r for each y, 
which would in this case give correlations exceeding unity because of the large 
intensity gradient. Also, a definition which is symmetrical in both space variables 
permits the correlations to be shown on contour plots, which is particularly 
useful for the (0, r ,  0 )  correlations. R,,(O, r,  0)  seems to take almost constant non- 
zero values near the edges, R -+ 0.3 at the inner edge and R --f 0.1 at the outer 
edge. It should be noted that the analysis of Phillips (1955) shows that the (0, r ,  0) 

* Note that r denotes correlation separation (the usual notation) : the nozzle radius is 
r,,. (0, 0, r )  denotes a separation r in the tangential direction. 
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FIGURE 9. Correlation coefficient Rll(r, 0, 0), x/rO = 4. 
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correlation coefficients outside a two-dimensional turbulent field eventually 
tend to zero as r-2. The observed behaviour of R,,(O, r,  0) confirms that the motion 
at the edges of the shear layer is largely that of the irrotational field induced by 
the high-intensity region, since Lilley & Hodgson (1960) show that the major 
term in the forcing function of the Poisson equation for the near-field pressure 
fluctuation is (av/alt) (aU/ay). We shall return to the correlation measurements in 
§ 7 .  

0- 1 

0 
5 
B 

- 01 

- 0 2  

FIGURE 12. Correlation coefficient R,,(O, T,  0), contours ./yo = 4. 

4. The irrotational motion 
(a )  In  the jet core 

The reason for our interest in the irrotational field is that it is closely connected 
with the static pressure fluctuations in the central turbulent region, which cannot 
at present be directly measured but which are fundamental to the production of 
noise, and which also contribute to turbulent diffusion. Lighthill (1954) has 
shown that the largest contribution to a2Tii/at2, which is one form of the ‘forcing 
function’ in the wave equation, in a low-speed flow with a large mean velocity 
gradient is (aU/ay) (ap/at). Lilley (1958) has obtained a possible approximate 
expression for this in terms of velocity fluctuations by the same method used to 
calculate the surface pressure fluctuations beneath a boundary layer, but direct 
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measurement would be very helpful. The nearest approach so far has been the 
study of the ‘near-field’ pressure fluctuations just outside the flow, by Franklin 
& Foxwell (1958), and others. These near-field fluctuations are important in 
their own right, because they can produce vibration (with consequent radiation 
of dipole noise) and structural damage in nearby parts of an aircraft structure, 
especially in ejector shrouds. 
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FIGURE 13. Correlation coefficient R,,(O, r, 0 ) ,  contours x/r0 = 4. 

The frequency spectra and correlations in the inner region, near ylr, = 0.6 
say, indicate that the irrotational field is composed chiefly of a small range of 
frequencies corresponding to the v- and w-component spectrum peaks in the 
high-intensity region near y/ro=l. The fluctuations in the inner region are 
almost entirely confined to the v- and w-components which are nearly equal 
in conformity with the result of Phillips (1955) that in an irrotational random 
velocity field on one side of the plane y = 0, 3 = s+ 3. At large y, L2 and 2 
are expected to become equal. As mentioned above, the correlation coefficient 
between the v-component a t  y/r, = 1 and at positions in the irrotational core 
takes a nearly constant value of 0.3: correlations in narrow frequency bands 
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have not been made on the inner side of the layer, but it is certain that most 
of the contribution to this correlation coefficient comes from the spectral peak 
at o x / U ,  = 8. The R,,(O, r ,  0) correlation coefficient between ylr, = 1 and 
positions in the core also appears to tend to a finite (positive) value. 

The B22( 0, 0, r )  scale increases greatly at negative values of r but the R,,(O, 0, r )  
scale is constant and roughly equal to the largest scale of Rz2(0, 0, r ) .  The 
R2,(0, 0 , O )  and R3,(r, 0,O) scales are nearly equal, nearly constant, and rather 
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FIGURE 14. Correlation coefficient R33(0, r, 0), contours x/ro = 4. 

larger than any value of the (0, 0, r )  correlation scales. We infer that the larger- 
scale turbulence in the high-intensity region, consisting of closely related v- and 
w-component wave motions, causes a v-component displacement flow in the 
inner irrotational region which spreads out in the z-direction, with an associated 
'sloshing ' of the w-component of approximately constant scale, and as EL conse- 
quence the backflow takes place half a wavelength upstream and downstream. 

As the maximum turbulent intensity in the mixing layer is much greater than 
in the wake or boundary layer, the absolute intensity in the irrotational field 
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is probably an order of magnitude greater, but the only directly relevant informa- 
tion is the observation by Lilley & Hodgson that the surface pressure fluctuation 
beneath a plane wall jet is about 0.05(&pU2),, compared with about 0.005 
(Q U2)max beneath a boundary layer. 

(b )  In the near field 

As turbulent fluid seems to penetrate occasionally at least as far as 7 = 0.2 
it  is necessary to make measurements of the irrotational flow at distances from 
the high-intensity region which are comparable with the predominant wave- 
lengths of the high-intensity turbulence, so that there is a pronounced attenua- 
tion of the higher frequencies in the near-field spectra. According to Phillips’s 
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(1955) analysis, in fact, the longitudinal wave-number spectrum of the near- 
field velocity fluctuation is 

#(h) = /#zZ(kl, k3) exp [ - 22/(% -t %) XzI dk3, 

where #22 is a typical wave-number spectrum in the high-intensity region and 
xz is the distance between the high-intensity region and the point of observation 
in the near field. If the turbulence in the high-intensity region can be regarded 
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FIGURE 17. Correlation coefficient R,,(O, 0, r ) ,  z/ro = 4. 

as a rigid pattern convected at velocity V, in the x,-direction, the near-field 
pressure fluctuation spectrum is 

so that at low k,, #, r~ w2 a t  low w (figure 18). At the larger distances x2 from the 
high-intensity region, the exp [ - 2 .,/(k: +ki) xz] cut-off affects even the low- 
frequency portion of the spectrum: a t  7 = 0-5, #, N 0 1 2  at low w. This cut-off 
masks the predominance of the peak in the #22 ‘forcing’ spectrum, but measure- 
ments of the correlation between the v-component fluctuation at 7 = 0 and the 
time derivative of the pressure fluctuation at 7 = 0.3 show that the motion a t  
the frequency of the peak is very highly correlated. The overall correlation co- 
efficient is about 0.22 and the correlation coefficient in a one-third octave fre- 
quency band near wxlU, = 8 is 0.59. The overall correlation coefficient between 
the v-component a t  7 = 0 and the velocity fluctuation at  7 = 0.3, measured with 
a linearized hot wire in the entrainment flow, is about 0.18 at  x/ro = 4. 

The spectrum of the velocityfluctuation at  q = 0-3 is shown in figure 19, plot- 
ted as log q522 against ox/U,. The weighting factor exp [ - 2wx2/Uc] is also shown: 
U, was taken as 0.65U,. It is seen that the spectrum falls slightly less rapidly than 
the weighting function in the mid-frequency range, but in view of our somewhat 
Procrustean adaptations of Phillips’s idealized analysis this should not be taken 
too seriously. The spectrum flattens out appreciably at the highest frequencies. 
At about wx/U, = 30 the signal became lost in amplifier noise but it seems that 
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the change in shape between wxlU, = 15 and 25, where the signal-to-electrical- 
noise ratio is still adequately high, is real. The same effect is present in the 
pressure-fluctuation spectra (figure 18) being considerably more pronounced at 

1 10 1 

FIGURE 18. Near-field pressure spectra at x/ro = 4, y/ro = 2.25 (7 0.3). 

M = 0.8 than at  M = 0.3. It seems probable that radiated sound is responsible: 
the spectral density of the sound field varies roughly as M7 whereas that of the 
near-field pressure varies as M3.  The ratio of the r.m.s. pressure fluctuation at 
7 = 0.3, say, to the dynamic pressure a t  the exit is likely to increase with Mach 
number for the additional reason that the weighting factor becomes 

in compressible flow: the effect of the decrease in argument is noticeable in the 
exp I: - 2 w2, + ( 1 - M 3 )  xzl 
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medium-frequency range of the pressure-fluctuation spectra, where the spectral 
density varies roughly as w-6 at M = 0.3 and w-4 a t  M = 0.8. Any decrease in 
turbulence intensity with increase in Mach number would oppose the observed 
increase in the pressure fluctuations. 
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F I G ~ E  19. Near-field velocity spectrum x/ro = 4, y/ro = 2.25. 

Xh-0 

FIGURE 20. Near-field velocity fluctuation 7 = 0.3. 

At the the lowest frequencies both the velocity and pressure fluctuation spectra 
shown here rise abruptly with decreasing frequency. The velocity spectrum 
is affected by draughts in the entrainment region of the jet, whereas the crystal 
microphone signal is swamped by vibration and amplifier noise. Some spectra 
measured with a capacitor microphone of &in. diameter fell smoothly with 
decreasing frequency but are not presented here because the results at higher 
frequencies are expected to be in error owing to spatial resolution effects. These 
spectra may be found in Bradshaw (1963 b) ,  an investigation which shows the 
effect of the near-field pressure fluctuations in exciting organ-pipe resonances 
in ejector shrouds. 
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Further investigation of the near field as a means of inferring the properties 
of the turbulent flow is somewhat hampered by the very large departures from 
self-preservation of the circular jet at large positive 7. The variation of the near- 
field velocity fluctuation a t  7 = 0.3 is shown in figure 20 (see also Mollo-Christen- 
sen 1963). The two-dimensional mixing layer would be a more useful flow for 
further study, though self-preservation is always restricted to 7 1 by the 
boundary-layer approximation. 

-0.10 -0.05 0 0.05 0.10 0.15 0.20 
tl 

0 6  0-8 1 -0 1.2 1 -4 

Yl.0 
FIGURE 21. Convection velocity x/ro = 4. 

( c )  The convection velocity 
The irrotational field seems to be largely responsible for the behaviour of the 
convection velocities of the u- and v-components which are compared with the 
mean velocity in figure 21: large differences occur in the intermittent regions 
near the edges of the shear layer. The convection velocity is defined here as the 
velocity of a frame of reference in which the time scale of the turbulence is a 
maximum, the most useful of the many possible definitions when noise produc- 
tion is being discussed. This velocity is the value of r/r a t  which 

(aR(r, 0,O; r)/ar}, = 0 

and is found to be roughly constant over a range of values of T. The difference 
between the convection velocity U, and the mean velocity U in some parts of the 
flow has been reported by Davies (1963) who ascribes it wholly to the skewness of 
the velocity fluctuations in the intermittent region. This is not, however, large 
enough to explain the difference of 30 % between Urn and V,  at the inner edge of the 
shear layer where the fluctuation intensity is quite small, nor does it explain the 
differences between the convection velocities of the u- and w-components. The 
observations, and the observation of Franklin & Foxwell that the near-field 
pressure fluctuations are convected at about 0.7Urn can be explained by noting 
that an irrotational field will move at the same speed as the eddies which give 
rise to it, in this case the eddies in the high-intensity region which move at  about 
0.6Um. In  the intermittent region on both sides of the shear layer the presence 
of vorticity fluctuations modifies the picture, as suggested by Davies, so that the 
u-component, which has a higher ratio of vorticity-mode to irrotational-mode 

39 Fluid Mech. 19 
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fluctuations than the v-component, has a convection velocity nearer to the mean 
velocity of the fluid. 

These observations can, it should be observed, still be reconciled with the 
spirit of Taylor’s original hypothesis that a turbulent eddy (meaning a patch of 
vorticity) remains associated with a given volume of fluid for most of its life. 
Turbulence may spread into initially irrotational fluid, and it now appears (Coles 
1962) this process may be reversed in certain circumstances, possibly confined to 
transitional flows, but there is no reason to suppose a preferred direction of 
vorticity diffusion with respect to theJluid, except near the edges of the flow. 

A comparison of the convection velocity in a jet with the values found by 
Pavre, Gaviglio & Dumas (1957) in the boundary layer, where Taylor’s hypo- 
thesis was more nearly obeyed, substantiates the suggestion that the irrotational 
field is proportionately stronger in the mixing layer than in other flows. The 
convection velocity results are reported in more detail in Wills (1963). 

5. The medium-scale eddies 
The space correlations of the three components at  ylr,  = 1 with separation in 

the y-direction are replotted in figure 22 as Rii = {ui(0)ui(r))/u:(O), the more 
conventional definition, for direct comparison with the correlations with sepa- 
rations in the directions of approximate homogeneity, x and z. No attempt was 
made to measure v- and w-correlations above 0-8 or 0-9 because of limitations on 
wire length, probe proximity and frequency response. However, the measure- 
ments clearly show that the medium-scale structure of the flow is far from iso- 
tropic although the intensities are not too different. The non-dimensional 
separations r / x  at which Rii has fallen to 0.5 arbitrarily taken as typical of the 
medium-scale motion, are 

__ 

fr, 0, 0) (0, r 7  0) @,Or r) 
R;, 0.060 0.025 0.020 
R;, 0.032 0.040 0.030 
R;3 0.020 0.019 0.068 

This table is roughly symmetrical about the leading diagonal, suggesting 
that the medium-scale flow would be better described in terms of the vorticity 
fluctuations, Rh2(r, 0,O) and R;,(O, r ,  0 ) ,  for instance, corresponding to the 
5-component of vorticity). A certain difficulty arises in defining the vorticity 
scale. The vorticity correlation is related to d2R/dr2 or the transform of k2q5(k) 
so the integral scale is clearly zero. The first zero of the vorticity correlation 
occurs at (dR/dr),, but this position is very ill-defined, and for practical purposes 
it is difficult to make a better choice of vorticity scale than the separation for 
which the velocity correlation takes an arbitrary value like 0.5. The ri separations 
for a given value of Rii are naturally larger than the normal separations: the 
Ril(r, 0 , O )  motion is always likely to be of larger scale than any other correlation 
since almost any conceivable eddy motion will contribute to it, either directly or 
through the amplifying effect of the mean-velocity gradient, and the R,,(O, 0, r )  
motion is inherently unaffected by the velocity gradient and is therefore likely 
to spread unimpeded over large separations, but the R,,(O, r,  0) scale is barely 
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larger than the other Rh2 scales. We see that the Rii = 0.5 scales associated with 
the vorticity components f ; ,  1;1 and 5 are 

f ; :  0.019 to 0.030, 7: 0.02 and 5: 0.025 to 0.032. 

As the shear stress -puV is produced by the stretching of vortices with roughly 
equal f ;  and 7 components one expects these two scales to  be smaller than that of 
5, but the difference is barely significant. The corresponding separations in the 
boundary layer at y/6, = 0.66 and in the wake at y/Z, = 1-8 (Grant 1958) are 
respectively 

(r/6,) = 0.13 0-13 0.13 and (r/Z,,) = 3-7 3.0 2.2 
0.10 0.11 0.09 2.6 1-6 1.4 
0.09 0.04 0.16 2 1.3 2.4 

I I I I I I 

- 1.0 -0.8 -0.6 -04 -0.2 0 0.2 0.4 0.6 
rh-0 

FIGURE 22. Rti(0, r ,  0) ,  x/ro = 4, y/r, = 1, 7 = 0. 
Correlation normalized by intensity at p = 0. 

where 6, is the distance from the surface at which the velocity in the boundary 
layer is u, = j (7w/p)  below the free-stream velocity and I, is the distance from 
the centre line at  which the velocity defect in the wake is e-fr (=  0.606) of its 
maximum value. The wake results in particular show the skew-symmetry effect, 
with Rii = 0.5 at 

(5: 1.3 to 1-4, 7: 2.0 to 2.2, C;: 2.6 to 3.0. 

The integral scales R'drlx at y/ro = 1, measured at x/r, = 4, are som 
(r, 0 , O )  (0, +r ,  0) (0, -rr 0) ( O , O ,  r )  

Kl 0.0445 0.033 0.024 0.0065 
RL 0.015 0.044 0.048 0.038 

0.012 0.016 0-024 0.087 
39-2 
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The percentage accuracy of the R22(r, 0 , O )  and R33(r, 0 , O )  scales is likely to be 
poor as they represent the small difference between two large quantities. In  fact, 
a scale corresponding to the maximum spectral density would be generally more 
informative than the integral scale, which corresponds to the spectral density at 
zero wave-number. 

6. Departures from similarity: the effects of axisymmetry 
Since most of the turbulent energy in the mixing layer resides quite near 

y/r ,  = 1 or 7 = 0 (two-thirds of Jq2dy  lying between 7 = +0.05 and -0.05) it 
is likely, and indeed it is found that the flow in this region will be largely 
unaffected by axisymmetry until the width of the high-intensity region (rather 
than the total width of the shear layer) becomes comparable with the nozzle 
radius, even though the flow outside the high intensity region may be greatly 
altered. We now proceed to examine the departures from similarity in the region 
near the end of the isrotational core. 

0.6 

0.4 
N 

6 

0.2 

0 
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FIGURE 23. Turbulent shear stress and shear correlation coefficient 
y/ro = 1. 

The approximation to similarity becomes less accurate for x/ro > 4: in fact 
quantities like the mean velocity (figure 2 (a)) ,  shear stress and shear correlation 
coefficient (figure 23), measured a t  y/ro = 1, decrease continuously from very 
near the nozzle exit. The mean velocity at  y/r,  = 1 is nearly (0.68 - 0.007x/r0) Urn 
for 3 < (z/r,) < 20. The v- and w-component intensities (figure 24) also decrease, 
but the decrease in u-component is barely noticeable until x/ro N 8, partly 
because the whole shear layer is shifted in the y-direction and the u-component in 
the mixing layer reaches a maximum at a small positive value of y. Figures 25- 
28 show the velocity, shear stress and intensity profiles at x/ro = 8 and x/ro = 15. 
The intensities on the axis are shown in figure 29. The v-component spectrum 
peak (figure 30) disappears completely by x/ ro = 8. This seems to be a real effect 
and not a mere swamping of the eddies which contribute to the peak by in- 
creased contributions to the low frequencies from other parts of the circum- 
ference: the normalized spectral density at low frequency is constant until 
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x/ro = 4 and only rises 35 % by x/ro = 8. In  view of the checks on Reynolds num- 
ber similarity mentioned in $ 2 ,  scale effect can almost certainly be ruled out. 
The w-component spectrum in the jet (figure 31) is more accurately self-preserving 
and the peak is still noticeable at x/ro = 15 but it is clear that the large eddies 
are greatly modified as the flow changes from a quasi-plane mixing layer to an 
axisymmetric jet. 

x/ro 

FIGURE 24. Root-mean-square turbdent intensity components at 
y/ro = 1 normalized by the values at x/ro = 4. 
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FIGURE 25. Mean velocity x/ro = 4, 8 and 15, to the same scale of 7. 

7. The large eddy distribution 
Townsend’s hypothesis (1956, 1958: see also Grant 1958) is that the correla- 

tions at  large separations are determined by a well-defined but fairly weak group 
of large eddies, an order of magnitude larger than the eddies containing most of 
the turbulent energy, which gain energy from the mean flow during the middle 
‘ equilibrium ’ period of their lives a t  approximately the same rate at  which they 
lose energy to the smaller-scale motion, and which are chiefly responsible for 
distorting the boundary of the rotational fluid, thus controlling the rate of spread- 



614 P .  Bradshaw, D. H .  Ferriss and R. F .  Johnson 

7 
FIGURE 26. TurbuIent shear stress x/ro = 4, 8 and 15 to the same scale of T.  
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FIGURE 27. Root-mean-square turbulent intensities z/ru = 8. 
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ing of the flow. Townsend goes on to deduce a relation between the mean velocity 
distribution and the Reynolds shear stress from the equilibrium condition for a 
possible eddy shape. Grant (1958) has measured spatial correlations in the wake 
and boundary layer and deduced eddy shapes which fit these correlations. 

FIGURE 28. Root-mean-square turbulent intensities x/ro = 15. 

The large eddy may be regarded as the type of finite-amplitude disturbance to 
which the turbulent flow is least stable. Too close a parallel with laminar- 
flow stability should not be assumed, and the stability theory for finite disturb- 
ances has not progressed far enough to indicate possible forms for self-limiting 
disturbances in a laminar flow except for the special case of flow between rotating 
cylinders: in free shear layers or boundary layers the finite-amplitude disturb- 
ances tend to become three-dimensional (Benney 1961 ; Klebanoff, Tidstrom 
& Sargent 1962) (see figure 1 (a)). If the large eddy is the least-stable disturbance, 
it is presumably the one which can be artificially augmentedwith the least expendi- 
ture of energy. Townsend’s hypothesis implies that this augmentation would 
be the most efficient way of increasing the Reynolds shear stress and the mixing 
rate, and this is the reason for our present interest. Before the measurements 
were started, it was assumed that the large eddies would, as postulated by Towns- 
end, have a fairly low intensity and large wavelength, and therefore contribute 
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little to the pressure fluctuations and noise output, so that augmenting them 
would not affect the noise output other than through their effect on the smaller- 
scale turbulence. However, if we take the spectrum of the large eddy motion to 
be represented by the difference between the actual shear stress spectrum 
R12(~){q511(~) q5 , , (~ ) }$ ,  which has a large peak near wx[U, = 8, and a plausible 
unpeaked spectrum with the same behaviour far from the peak, we see that the 
large eddy motion contributes something like a quarter of the total shear stress. 
Although these strong, large eddies undoubtedly control the flow as Townsend 
suggests, it is likely that Townsend’s ‘equilibrium ’ hypothesis is only applicable 
to weak eddies. Since the large eddies have a disproportionately long life, we 
may assume that their contribution to the noise output is less than that of an 
equally intense distribution of, say, isotropic turbulence. According to Lilley’s 
final formula the noise output depends on J&.(r, 0 , O )  dr which is small compared 
with / l R 2 2 ( ~ ,  0,O)l dr because of the prolonged wavelike motion of the large 
eddy. However, this is an approximate formula, and a more accurate expression 
is obtained by using a scale based on JRzz(r) dV. The estimation of this scale would 
require measurement of R,, with separation oblique to the co-ordinate axes, 
and we have not yet made these measurements. 

Another identification of the noise-producing part of the turbulence is Ffowcs 
Williams’s (1963) description of it as the part convected towards the observer 
at  the speed of sound. At jet exit Mach numbers in the subsonic range, this implies 
a part of the turbulence on the fringe of the probability distribution, and since 
the large eddies are likely to have a rather restricted range of intensities and 
convection velocities they should make a rather smaller than average contribu- 
tion. Wills’s (1963) u-component filtered space correlations at 7 = 0 do not 
noticeably demonstrate this effect, which should show up as a smaller dispersion 
in frequency for a given wave-number in the large-eddy range, but the large- 
eddy contribution to the u-component spectrum is small. The preceding argument 
implies that the large eddies may contribute a large part of the noise output when 
their convection velocity is near the ambient speed of sound, which is likely to  be 
the case with hot choked jets. However the noise output of the large eddies 
may compare with that of the smaller-scale motion, the undoubted preference of 
the flow for a particular large eddy form seems to indicate the best method of in- 
creasing the mixing rate. As mentioned above, any increase in turbulence 
level (shear stress or intensity) is likely to increase the noise output per unit 
volume of turbulence so that one must choose the most efficient way of producing 
an increased shear stress and so reduce the total volume of noise-producing 
turbulence sufficiently for the total noise output to decrease. 

The process of deducing large eddy shapes from measured correlations has 
been described by Grant (1958). We simply look for eddies which could generate 
the observed negative correlations by producing velocities of different signs at 
two points separated in the direction of the correlation vector. (These eddies are 
supposed to follow one another with random sign of rotation and with varying 
intensity, wavelength and position in the flow. The special property of the large 
eddies is that these variations of intensity, wavelength and position are suffi- 
ciently small to make the eddies detectable against the background of more 
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random turbulence.) For example, an eddy like a long rotating cylinder with 
axis in the x-direction would produce negative values of R,,(O, 0, r )  and R33(O,  r ,  0) 
and positive values of a,,@, 0,O) and R33(r, 0 , O ) .  

The correlations with noticeable negative loops in the mixing layer are 
R2,(r, 0, 0 ) ,  R33(r, 0,O) and R,,(O, 0, r )  (figures 10, 11, 15). R,,(O, r ,  0) takes 
negative values near the edges of the flow, and there is a negative region in the 
contour plot of R3,(0, r ,  O), the most negative correlation occurring between 

xlr0 

FIGURE 29. Root-mean-square turbulent intensity components giro = 0. 

positions y/r, = 0.9 and yfr, = 1.3. At first sight one would guess that the 
R33(r, 0 , O )  and R,,(O, 0, r )  negative loops were manifestations of an array of 
vortices with axes in the y-direction, probably occurring at roughly equal inter- 
vals in the x-direction. However, it  appears from figures 29 and 30 that the peak 
in C)22, corresponding roughly to the negative loop in R2,(r, 0, 0), disappears by 
about x/ro = 8, whereas the peak in C)33 decays much more slowly. Some approxi- 
mate measurements of R,,(O, 0, r )  a t  x/ro = 8 indicate that the negative loop in 
this correlation has decreased by very nearly the same factor as the peak in C ) z 2  
(or the negative loop in R2,(r ,0 ,0) )  at the same distance from the exit. This 
suggests that the negative loop in R,,(O, 0, r )  is connected with the v motion rather 
than the w motion. The appropriate v motion would be a mixing-jet of the type 
suggested by Grant, which is also suggested by the appearance of prominent 
diagonal streaks, apparently in the xy-plane a t  about - 45" to the axis, on the 
schlieren pictures (see plate 1, figure 1 (c)). The fluid in the mixing-jet arrives at  a 
given point with a u-component velocity different from the mean velocity at that 
point because it has originated from another point in the shear layer (this is the 
familiar 'mixing length ' argument) : there is therefore a negative correlation 
between the u-component velocity in the mixing-jet and the u-component velo- 
city outside the mixing-jet, particularly at points a t  a distance in the z-direction. 
We would expect the R,,(O, 0, r )  negative correlation to be more noticeable than 
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theR,,(r, 0,O) negative correlation because the latter is likely to be swamped bythe 
random v-component undulations of the shear layer which produce the charac- 
teristically large scale of Bll(r, 0,O) correlations by ‘shaking ’ the mean velocity 
gradient. The Rll(O, 0, r )  correlation is therefore probably an indication of the 
presence of mixing-jets rather than vortices aligned along the y-axis. Support 
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FIGURE 30. v-component spectra y/r0 = 1. 
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for this is obtained from Grant’s correlations in the wake, where R,,(O, 0 ,  r )  
reaches its most negative value near the position where the mean velocity gradi- 
ent is a maximum, the negative values on the centre line and near the outer edge 
being much smaller. In the boundary layer B,(O, 0, r) also has a much more 
pronounced negative loop in the middle of the layer than near the surface. 
Grant commented that mixing-jets were indicated in the boundary layer by 
most of the evidence except that R22(r, 0,O) had a single negative loop instead of 
being periodic. (A single negative loop usually corresponds to a wave-number 
spectrum without a prominent peak but still with a sharp decrease in spectral 
density above a certain frequency, indicating a lower bound to the eddy wave- 
length without a corresponding upper bound. Most spectra which fall off gradu- 
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ally correspond to entirely positive correlations, for example, q4 = 2/n( 1 + w2)  
and R = ect. There seems to be no reason why we should not imagine mixing- 
jets in a boundary layer (which has no point of inflexion and is therefore stable 
in the inviscid case) which have no preferred (eigenvalue) frequency, but which 
cannot survive if their size is too small. This comes to the same thing as suggesting 

(4 urn 
FIQURE 31. w-component spectra y/ro = 1. 

that the jets follow each other a t  random intervals in the x-direction, with a 
fairly definite lower bound to the interval. There is no concrete evidence why 
this should be so, but the presence of an unusually sharp cut-off in the wave- 
number spectrum indicates some degree of organization of the eddies.) 

The material part of the large eddy in the mixing layer therefore reduces to a 
v-component and a w-component wave motion giving rise to oscillations of 
R,,(r,O,O) and R33(r,0,0). Although VW must be zero by symmetry, it is still 
possible that v and w are nearly in phase for a given large eddy and nearly in 
anti-phase for another so that positive and negative values of vw would cancel 
out. The alternative is for the v and w motions to be nearly in quadrature, leading 
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to an eddy like a body of fluid following a helical path with the axis at roughly 
7 = 0. It is possible to distinguish between the alternatives by measuring 
1.1 Iwl/(GG) or u2w2/(u2w2) which would receive positive contributions from u- 
and w-components in phase or in anti-phase, but zero or small contributions from 
v- and w-components in quadrature. As a matter of convenience, u2w2/(u2w2) 
was measured: its value for identical u- and w-components in phase or anti-phase 
would be equal to the value of or G/(w~)~,  that is, about 3, whereas if 
u and w were in quadrature the value would be unity-at least, this is so if u can 
be written as Zansin (nt+q5n) and w as I;ancos(nt+q5,): these are the usual 
Fourier representations used in (Gaussian) random noise theory but they imply 
the assumptions that the flatness factor is 3 and the skewness zero, and are there- 
fore not rigorously applicable to turbulence. If u = sin at, w = cos nt, 

__ __ 

__-- 

_ _ _ _  
u2w"(v"w") = 4, 

u2w"(v"2) N- 2.1 

~ -_  
and if u and w are completely unrelated u2w2/(u2w2) = 1 again. Experimentally, 

__ -_ 

and for signals filtered in third-octave bands with a centre frequency at approxi- 
mately the peak of the v-component spectrum u2w2/(u2w2) rises to 2.7. No great 
accuracy is claimed for these figures which were obtained with unlinearized, 
unmatched X probes but they clearly support the proposition that the u- and 
w-components of the large eddies are in phase or anti-phase, and that the large 
eddy motion is predominantly a mixing-jet which, instead of moving in the 
xy-plane as the mixing jets in the wake appear to do, crosses the shear layer a t  an 
angle of about 45" in the yz-plane (v" and G being approximately equal). This 
inclined mixing-jet also undergoes large changes in a-component velocity rela- 
tive to the local mean velocity as it moves across the shear layer, and it appears 
from plate 1, figure 1(c), that the maximum rate of extension of vortex lines 
occurs on a line at about - 45" in the (x, y)-plane. This, or almost any other sort 
of mixing-jet structure, plausibly explains the negative areas in the contour 
plot of Rll(O,r, 0). 

An inclined mixing-jet of this sort could not possibly exist in isolation: it 
is very difficult to see how an asymmetrical w-motion of the type required 
could arise without some strong stimulus, and such a stimulus can only be 
provided by a previous mixing-jet. If we accept this last assertion, which is 
supported by the obvious periodicity in B22(r, 0 , O )  and R33(r, 0, 0), we come to 
the conclusion that inclined mixing-jets follow each other at  fairly regular 
intervals in the x-direction, and that a new jet is triggered by the preceding 
one at a late stage in the life of the latter: the simplest situation would be for 
the new jet to have the opposite sign of w-component velocity to the old jet 
and so-crudely speaking-tend to return along the z-axis to replace the fluid 
removed by the old jet. If there were only one row of mixing-jets aligned in 
the x-direction this would probably be the actual situation and we would have 
a w-motion with twice the wavelength of the v-motion. There is, however, not 
the slightest trace of this and we must conclude that the direction of the w- 
component motion is likely to be the same as that of the preceding eddy- 

__ _ _  



Turbulence in a circular jet  621 

though over a long period of time both directions must be equally favoured. 
We may note parenthetically that the wave-number spectra in turbulent flow 
never have more than one peak: there is never any trace of a fundamental 
wave-number with additional harmonic components. This is a difficulty in 
explaining the observations in the mixing layer and the wake in terms of 
mixing-jets because if the jets consisted, as one would expect, of a sudden surge 
followed by a slower backflow, a pronounced contribution to the spectra a t  
three times the fundamental wave-number would be present. Evidently one 
should not presume too much upon the degree of organization of the large eddies. 

The negative region in the &3(O, r ,  0) contour plot is consistent with the pre- 
sence of inclined mixing jets. The w-motion at all negative values of y (repre- 
sented in figure 14 by the sector bounded by radii from the y origin at  135 and 270 
degrees to the y-axis) is well correlated. It is also negatively correlated with the 
motion near 7 = + 0.07, but its correlation with the motion near the outermost 
edge of the flow shows signs of becoming positive again. We deduce the presence 
of a coherent w-component motion in the regions between 7 = 0.3 and 7 = 0.1, 
which is evidently the mixing-jet a t  its maximum intensity. As was remarked 
in the discussion of the R,,(O, 0, r )  correlation, the effect of a single coherent 
motion in an otherwise random field is to produce an anticorrelation between 
points outside the area of motion and points within. 

The correlations which we have not so far examined are R,,(O, r,  0), R,,(O, 0, r )  
and &3(O, 0, r ) .  R,,(O, r ,  0) is everywhere positive, like Rii(ri) correlations in 
general and the R,,(O, r ,  0) correlations in the boundary layer and wake in par- 
ticular. R,,(O, 0, r )  also seems to remain positive, though a little uncertainty 
necessarily attaches to (0, 0, r )  correlations in a flow which is not accurately 
two-dimensional. Any sort of large eddy involving a longitudinal vortex motion 
would produce negative values of R,,(O, 0, r ) .  It is surprising that mixing-jets 
do not also produce negative values as was argued in the cases of R,,(O,O,r) 
and R33(O, r ,  0), but R,,(O, 0, r )  is always positive in the wake and takes only 
slightly negative values in the boundary layer. If one regards Grant’s argument 
in favour of mixing-jets in the wake as convincing, one can only accept that 
the jets are of sufficient extent in the z-direction for all the required v-component 
backflow to take place at other positions along the x-axis, although not of suf- 
ficient extent to mask the tendency for negative values of R,,(O, 0, r )  to appear. 
The rapid decrease in scale of R,,(O,O,r) as y increases is noteworthy: at 
y = + 0.1 it  has fallen to roughly the same value as the R,,(O, 0, r )  scale. This 
seems to be characteristic of the inclined mixing-jets; in the wake R,,(O, 0, r )  
is very nearly the same at all positions. 

The negative values of R3,(0, 0, r )  found in the wake were associated with 
the vortex pair eddies, which also produced a periodicity in R,,(O,O,r) and 
R33(r,070). In  the mixing layer we have no negative values of R33(O70,r), 
the single change of sign of R,,(O, 0, r )  can be accounted for by the mixing jets 
alone, and R33(r, 0,O) has been shown to be closely connected with R,,(r, 0,O). In  
the wake, the negative loop in R33(r, 0 , O )  is much less pronounced than that in 
&(r, 0,O) leading one to suppose that the w-component plays a less important 
role in the large eddy structure than the v-component. The negative values of 
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R,,(O, 0, T )  in the wake could be explained by supposing that the w-component 
motion induced by the mixing-jets was a symmetrical inflow into the space left by 
the departing jet. In  the mixing layer, however, the mixing-jets are undoubtedly 
asymmetrical in the (y, 2)-plane, and the w-component inflow evidently tends to 
occur on one side only. The mixing-jets in the wake occurred alternately on either 
side of the centre line, so that a new jet was triggered by an old one on the other 
side of the wake, giving rise to a periodicity in the x-direction. The vortex pairs 
seem more likely to be the result, rather than the cause, of the mixing-jets, and 
Grant's tentative suggestion that they arose in the K&rm&n vortex street does not 
appear well substantiated-though such an origin would certainly explain the 
absence of any tendency to vortex pairs in the mixing layer. 

We conclude, therefore, that the large eddy motion in the mixing layer consists 
of a series of mixing jets which, instead of lying in the (2, y)-plane as in the wake, 
move at an angle of about 45" to this plane. This asymmetrical motion in the 
yz-plane appears to be a mechanism for providing the necessary backflow: it 
is an alternative to the symmetrical mixing jet, with symmetrical backflow 
and resulting negative values of R,,(O, 0, r ) ,  found in the wake. The evidence 
in favour of this eddy shape is the periodicity in R22(r, 0 , O )  and R3,(r, 0 , O )  and 
the close connexion between the w- and w-motions shown by the high value of 
v2wz/(u2w2). The negative values of R,,(O, 0, r )  support the suggestion of a 
w-component mixing-jet transferring u-component momentum across the layer, 
end the small negative region in the &,(O, r ,  0) contour plot suggests a coherent 
w-component motion in a small part of the layer. 

There appears to be no law of nature determining whether the mixing-jets 
move inwards or outwards-in the wake of course, they move from the low- 
velocity, high-intensity to the high-velocity, low-intensity region-and their 
influence is obviously felt at both boundaries of the shear layer. There is no 
evidence for a simultaneous or successive departure of jets in either direction 
from the high-intensity region of the layer, which one would expect to produce 
negative values of R,,(O, T ,  0). If we accept that the negative loop in R,,(O, 0, T )  

is caused by the mixing-jets, rather than by a rotation about the y-axis, we can 
deduce from the near disappearance of the negative loop a t  7 = - 0.05 that the 
jet move outwards from 7 > - 0.05. The induced motion on the inner side of the 
shear layer should therefore be caused largely by pressure fluctuations rather 
than by transport of fluid from the high-intensity region, and this is compatible 
with the observed behaviour of the correlation length scales in this region, most 
of which increase as 7 decreases. Little can be deduced from the relative rates 
of spread of the boundaries: although it can be seen from figure 7 (b )  that the rate 
of spread is about twice as large on the low-velocity side as on the high-velocity 
side, this is a direct consequence of the integral expressing conservation of 
momentum which, for a two-dimensional layer is ]qd(U/Um)z = 0 so that the 
U2 profile is roughly symmetrical about q = 0. The true centre of the layer is 
the high-intensity region at 21 + 0.02: the ratio of the inward to the outward 
rate of spread measured from this point is about 2: 3 instead of 1 : 2. About all 
that can be said is that outward-going jets are a little more plausibly in agree- 
ment with the observed growth rate. The evidence from R,,(O, 0, r )  seems to be 

~ _- 
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adequately convincing, and is supported by the observation that the w-com- 
ponent intensity (figure 4) is considerably less than the v- and u-component 
intensities near the inner edge of the layer, indicating a smaller u-component 
momentum transport by the mixing-jets: in the outer region C/U, is noticeably 
larger than the other two components. 

Departures from self preservation of the large eddies 

For x/ro > 8 there is very little left of the v-component spectrum peak, and the 
w-component peak has greatly decayed by x/ro = 15. We conclude that the 
mixing-jets themselves die out at an early stage in the development of the 
asymptotic jet. Indeed we might expect that the asymmetrical mixing-jets would 
be rather quickly affected by curvature of the shear layer: a jet which begins by 
moving outward a t  45" to the radius in an annular shear layer may end by moving 
almost radially at another point on the circumference, which is likely to disturb 
the triggering of a new jet by the preceding one. We have not made sufficient 
measurements at positions further downstream to establish the large eddy struc- 
ture of the asymptotic jet but it may reasonably be assumed that such a structure 
does exist. Visual observations strongly suggest the presence of mixing-jets. 
Some q522 and q533 spectrum measurements at x/ro  = 40 show that q533 has a notice- 
able peak at all radii (though the peak frequency seems to decrease with increasing 
radius) but that the q522 peak is scarcely apparent, except, of course, near the 
centre line where v = w. This is in line with the observations near the end of the 
mixing layer region. It would indeed be surprising if the axial periodicity in the 
asymptotic jet were as strong as in the quasi-plane mixing layer, because of the 
random influence of disturbances from other parts of the circumference. 
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FICI-RE 1 (b) .  Gas-injection schlieren pirtiires: %in. diametcr 
jet Z’, 5 40 ft.:sw. 

FIGURE 1 ( c ) .  Gas-injection schlieren pictures : %in. diametor 
jet CTm == 280 ft./sec. 
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